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Outline

• Multigrid: a 30-second introduction

• The scalar Newton’s method

• Newton’s method for systems

• Multigrid for Newton’s method: Newton-MG

• Nonlinear multigrid: full approximation storage (FAS)

• Numerical examples of Newton-MG and FAS
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The 1-d Model Problem

• Poisson’s equation:                     in [0,1], with boundary 
conditions                            .

• Discretized as:

• Leads to the Matrix equation                       ,  where 
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Weighted Jacobi Relaxation
• Consider the iteration:

• Letting A = D-L-U,  the matrix form is:

.

• It is easy to see that if                                       
, then
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Relaxation Smoothes the Error
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• Initial error,

• Error after 35 iteration sweeps:

Many relaxation 
schemes

have the smoothing 
property, where 

oscillatory
modes of the error 

are
eliminated 

effectively, but 
smooth modes are 

damped 
very slowly.
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Smooth error can be represented 
accurately on a coarse grid

• A smooth function:

• Can be represented by linear 
interpolation from a coarser grid:
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On the coarse grid, the 
smooth error appears to
be relatively higher in 

frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum.  On the coarse 
grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the 

spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!!
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Coarse-grid Correction
• Perform relaxation on                  on fine grid until 

error is smooth.

• Compute residual,                    and transfer to the 
coarse grid                     .

• Solve the coarse-grid residual equation to obtain 
the error:

• Interpolate the error to the fine grid and correct 
the fine-grid solution:

fuA hhh =
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Coarse-grid Correction

Relax on fuA hhh =
uAfr hhhh −=Compute

rIr 22 hh
h

h =
Restrict

Solve reA 222 hhh =
rAe 2122 hhh )(= −

Correct
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Tools Needed
• Interpolation and restriction operators:

Linear                Injection             Full-weighting
Interpolation

• Coarse-grid Operator          .   Two methods:
(1) Discretize equation at larger spacing
(2) Use Galerkin Formula: 
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Recursion: the (  ,0) V-cycleν

• Major question: How do we “solve” the coarse-grid 
residual equation? Answer: recursion !
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Multigrid uses coarse grids to damp 
out smooth error components

smoother

Finest Grid

First Coarse Grid

A Multigrid V-cycle
Prolongation-

transfer from coarse to fine grid

Restriction-
transfer from fine to coarse grid

Note:
smaller grid

11 of  38
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Nested Iteration
• Idea: It’s cheaper to solve a problem (i.e., takes 

fewer iterations) if the initial guess is good.

• How to get a good initial guess: 
– Interpolate coarse solution to fine grid.
– “Solve” the problem on the coarse grid first.
– Use interpolated coarse solution as initial guess on 

fine grid.

Combined with the V-cycle as the solver  this defines
the Full Multigrid (FMG) cycle.

12 of  38
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Full Multigrid (FMG)
• Restriction
• Interpolation
• High-order Interpolation

13 of  38
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Nonlinear Problems

• How should we approach the nonlinear system

and can we use multigrid to solve such a system?

• A fundamental relation that multigrid relies on, 
the residual equation

does not hold,  since, if A(u) is a nonlinear 
operator,

fuA =)(

reAvAfvAuA =⇒−=−

eAvAuA )(≠)(−)(
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The Nonlinear Residual Equation

• We still base our development around the residual 
equation, now the nonlinear residual equation:

• How can we use this equation as the basis for a 
solution method?

fuA =)(

vAfvAuA )(−=)(−)(

rvAuA =)(−)(
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Let’s consider Newton’s Method

• The best known and most important method for 
solving nonlinear equations!

• We wish to solve F(x) = 0 .
• Expand F in a Taylor series about x :

• Dropping higher order terms, if x+s is a solution,

• Hence, we develop an iteration

0 )(′/)(−=∴)(′+)(= xFxFsxFssF

xF
xF

xx
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F( x + s) = F( x) + sF ′( x) + s2 F ″ ( ξ)
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Newton’s method for systems

• We wish to solve the system A(u) = 0.  In vector 
form this is

• Expanding A(v+e) in a Taylor series about v :
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Newton for systems (cont.)
• Where J(v) is the Jacobian system

• If  u=v+e is a solution, 0 = A(v) + J(v) e and

• Leading to the iteration
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Newton’s method in terms of the 
residual equation

• The nonlinear residual equation is

• Expanding A(v+e) in a two-term Taylor series about v :

• Newton’s method is thus:

rvAevA =)(−)+(
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How does multigrid fit in?

• One obvious method is to use multigrid to solve 
J(v)e = r at each iteration step. This method is 
called Newton-multigrid and can be very effective.

• However, we would like to use multigrid ideas to 
treat the nonlinearity directly.

• Hence, we need to specialize the multigrid 
components (relaxation, grid transfers, 
coarsening) for the nonlinear case.
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What is nonlinear relaxation?
• Several of the common relaxation schemes have 

nonlinear counterparts.  For A(u)=f, we describe 
the nonlinear Gauss-Seidel iteration:

– For each j=1, 2, …, N
• Set the jth component of the residual to zero and solve for 

vj .  That is, solve (A(v))j = fj .

• Equivalently,
– For each j=1, 2, …, N

• Find  s ∈ ℜ such that 

where      is the canonical jth unit basis vector 

=))ε+(( fsvA jjj
εj
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How is nonlinear Gauss-Seidel done?
• Each is a nonlinear scalar equation for 

vj . We use the scalar Newton’s method to solve! 

• Example:                                              may be 
discretized so that                      is given by

• Newton iteration for vj is given by
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How do we do coarsening for 
nonlinear multigrid?

• Recall the nonlinear residual equation

• In multigrid, we obtain an approximate solution v h 

on the fine grid, then solve the residual equation 
on the coarse grid.

• The nonlinear residual equation on        appears as 

rvAevA 222222 hhhhhh =)(−)+(

Ω2h

rvAevA =)(−)+(
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Look at the coarse residual equation

• We must evaluate the quantities on       in

• Given v h, a fine-grid approximation, we restrict 
the residual to the coarse grid  

• For v 2h we restrict v h by 
• Thus,

Ω2h

rvAevA 222222 hhhhhh =)(−)+(

vAfIr 22 hhhh
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We’ve obtained a coarse-grid 
equation of the form           .fuA 222 hhh =)(

• Consider the coarse-grid residual equation:

• We solve                      for and  
obtain

• We then apply the correction:      
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FAS, the Full Approximation 
Scheme, two grid form

• Perform nonlinear relaxation  on to 
obtain an approximation      .

• Restrict the approximation and its residual

• Solve the coarse-grid residual problem

• Extract the coarse-grid error

• Interpolate and apply the correction

eIvv hh
h

hh += 2
2

fuA hhh =)(
vh

vIv 22 hh
h

h = vAfIr 22 hhh
h

h ))(−(=

rvAuA 22222 hhhhh +)(=)(

vue 222 hhh −=



27 of  38

FAS, the Full Approximation 
Scheme, two grid form

Nonlinear
Relaxation on fuA hhh =)(

Restrict
vAfIr 22 hhh

h
h ))(−(=

vIv 22 hh
h

h =

Solve
rvAuA 22222 hhhhh +)(=)(

Extract
vIue 222 hh

h
hh −=

Interpolate & Correct

eIvv hh
h

hh += 2
2



28 of  38

A few observations about FAS

• If A is a linear operator then FAS reduces directly to 
the linear two-grid correction scheme.

• A fixed point of FAS is an exact solution to the fine-
grid problem and an exact solution to the fine-grid 
problem is a fixed point of the FAS iteration.
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A few observations about FAS, 
continued

• The FAS coarse-grid equation can be written as

where       is the so-called tau correction.  

• In general, since    , the solution       to the 
FAS coarse-grid equation is not the same as the 
solution to the original coarse-grid problem        .

• The tau correction may be viewed as a way to alter 
the coarse-grid equations to enhance their 
approximation properties. 

fuA 2222 h
h

hhh τ+=)(
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2 0 u2h
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Still more observations about 
FAS

• FAS may be viewed as an inner and outer iteration: 
the outer iteration is the coarse-grid correction, 
the inner iteration the relaxation method.

• A true multilevel FAS process is recursive, using 
FAS to solve the nonlinear problem using       . 
Hence, FAS is generally employed in a V- or W-
cycling scheme.

Ω2h Ω4h
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And yet more observations about 
FAS!

• For linear problems we use FMG to obtain a good 
initial guess on the fine grid.  Convergence of 
nonlinear iterations depends critically on having a 
good initial guess.

• When FMG is used for nonlinear problems the 
interpolant is generally accurate enough to 
be in the basin of attraction of the fine-grid 
solver.

• Thus, one FMG cycle, whether FAS, Newton, or 
Newton-multigrid is used on each level, should 
provide a solution accurate to the level of 
discretization, unless the nonlinearity is extremely 
strong. 

uI 2
2

hh
h
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Intergrid transfers for FAS

• Generally speaking, the standard operators (linear 
interpolation, full weighting) work effectively in 
FAS schemes.

• In the case of strongly nonlinear problems, the 
use of higher-order interpolation (e.g., cubic 
interpolation) may be beneficial.

• For an FMG scheme, where               is the 
interpolation of a coarse-grid solution to become a 
fine-grid initial guess, higher-order interpolation 
is always advised.

uI 2
2

hh
h
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What is in FAS?A 2h( u2h)
• As in the linear case, there are two basic possibilities:

• is determined by discretizing the nonlinear 
operator A(u) in the same fashion as was employed to 
obtain , except that the coarser mesh spacing 
is used.

• is determined from the Galerkin condition

where the action of the Galerkin product can be 
captured in an implementable formula.  

• The first method is usually easier, and more common.

A h( uh)

A 2h( u2h)

A 2h( u2h)
A 2h( u2h) = Ih

2h A h( uh) I2h
h
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Nonlinear problems: an example

• Consider 

on the unit square [0,1] x [0,1] with homogeneous 
Dirichlet boundary conditions and a regular 
Cartesian grid.

• Suppose the exact solution is

− ∆u( x, y) + γu( x, y) eu( x, y) = f ( x, y)

u( x, y) = ( x2− x3 ) sin ( 3πy)
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Discretization of nonlinear example
• The operator can be written (sloppily) as

• The relaxation is given by
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FAS and Newton’s method on 
− ∆u( x, y) + γu( x, y) eu( x, y) = f ( x, y)

• FAS

• Newton’s Method

1 10 100 1000
convergence factor 0.135 0.124 0.098 0.072

number of FAS cycles 12 11 11 10

1 10 100 1000
convergence factor 4.00E-05 7.00E-05 3.00E-04 2.00E-04

number of Newton iterations 3 3 3 4

γ

γ
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Newton, Newton-MG, and FAS on
− ∆u( x, y) + γu( x, y) eu( x, y) = f ( x, y)

• Newton uses exact solve, Newton-MG is inexact Newton with 
a fixed number of inner V(2,1)-cycles  the Jacobian problem, 
overall stopping criterion  

Outer Inner
Method iterations iterations Megaflops
Newton 3 1660.6

Newton-MG 3 20 56.4
Newton-MG 4 10 38.5
Newton-MG 5 5 25.1
Newton-MG 10 2 22.3
Newton-MG 19 1 24.6

FAS 11 27.1

<|||| r 01
2 01 −
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Comparing FMG-FAS and FMG-Newton
− ∆u( x, y) + γu( x, y) eu( x, y) = f ( x, y)

We will do one FMG cycle using a single FAS V(2,1) -
cycle as the “solver” at each new level.  We then 
follow that with sufficiently many FAS V(2,1)-cycles 
as is necessary to  obtain ||r|| < 10-10.

Next, we will do one FMG cycle using a Newton-
multigrid step at each new level (with a single linear 
V(2,1)-cycle as the Jacobian  “solver.”)  We then 
follow that with sufficiently many Newton-multigrid 
steps as is necessary to  obtain ||r|| < 10-10.
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Comparing FMG-FAS and FMG-Newton
− ∆u( x, y) + γu( x, y) eu( x, y) = f ( x, y)

Cycle Mflops Mflops Cycle
FMG-FAS 1.10E-02 2.00E-05 3.1 1.06E-02 2.50E-05 2.4 FMG-Newton

FAS V 6.80E-04 2.40E-05 5.4 6.70E-04 2.49E-05 4.1 Newton-MG
FAS V 5.00E-05 2.49E-05 7.6 5.10E-05 2.49E-05 5.8 Newton-MG
FAS V 3.90E-06 2.49E-05 9.9 6.30E-06 2.49E-05 7.5 Newton-MG
FAS V 3.20E-07 2.49E-05 12.2 1.70E-06 2.49E-05 9.2 Newton-MG
FAS V 3.00E-08 2.49E-05 14.4 5.30E-07 2.49E-05 10.9 Newton-MG
FAS V 2.90E-09 2.49E-05 16.7 1.70E-07 2.49E-05 12.6 Newton-MG
FAS V 3.00E-10 2.49E-05 18.9 5.40E-08 2.49E-05 14.3 Newton-MG
FAS V 3.20E-11 2.49E-05 21.2 1.70E-08 2.49E-05 16.0 Newton-MG

5.50E-09 2.49E-05 17.7 Newton-MG
1.80E-09 2.49E-05 19.4 Newton-MG
5.60E-10 2.49E-05 21.1 Newton-MG
1.80E-10 2.49E-05 22.8 Newton-MG
5.70E-11 2.49E-05 24.5 Newton-MG

|||| rh |||| rh|||| eh |||| eh
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Conclusions

• Multigrid can be used for nonlinear problems 
either by using an inexact Newton’s method with 
multigrid as the Jacobian system solver or by 
using FAS to perform multigrid processing 
directly on the nonlinear system.

• The choice of Newton-MG versus FAS is best 
made with consideration of the cost of nonlinear 
evaluations; performance of the two methods is 
often similar.

• In either case FMG type cycling should be used.


	Van Emden HensonCenter for Applied Scientific ComputingLawrence Livermore National Laboratoryvhenson@llnl.govhttp://www.ca
	Outline
	The 1-d Model Problem
	Weighted Jacobi Relaxation
	Relaxation Smoothes the Error
	Smooth error can be represented accurately on a coarse grid
	Coarse-grid Correction
	Coarse-grid Correction
	Tools Needed
	Recursion: the (  ,0) V-cycle
	Multigrid uses coarse grids to damp out smooth error components
	Nested Iteration
	Full Multigrid (FMG)
	Nonlinear Problems
	The Nonlinear Residual Equation
	Let’s consider Newton’s Method
	Newton’s method for systems
	Newton for systems (cont.)
	Newton’s method in terms of the residual equation
	How does multigrid fit in?
	What is nonlinear relaxation?
	How is nonlinear Gauss-Seidel done?
	How do we do coarsening for nonlinear multigrid?
	Look at the coarse residual equation
	We’ve obtained a coarse-grid equation of the form           .
	FAS, the Full Approximation Scheme, two grid form
	FAS, the Full Approximation Scheme, two grid form
	A few observations about FAS
	A few observations about FAS, continued
	Still more observations about FAS
	And yet more observations about FAS!
	Intergrid transfers for FAS
	What is              in FAS?
	Nonlinear problems: an example
	Discretization of nonlinear example
	FAS and Newton’s method on
	Newton, Newton-MG, and FAS on
	Comparing FMG-FAS and FMG-Newton
	Comparing FMG-FAS and FMG-Newton
	Conclusions

